МОДИФИЦИРОВАННЫЙ РЕКУРРЕНТНЫЙ МЕТОД ДЛЯ ИДЕНТИФИКАЦИИ ПАРАМЕТРОВ РАСХОДНЫХ ХАРАКТЕРИСТИК ЭНЕРГОБЛОКОВ ТЭС

Филатов А.Г., к.т.н., доц., Курило О.С., студент

НТУУ «КПИ», кафедра электрических станций

Введение. Расходные характеристики энергоблоков тепловых электростанций (ТЭС) представляют собой зависимость между расходом топлива и электрической нагрузкой энергоблока и являются основной исходной информацией при оптимизации режимов ТЕС по активной мощности [1]. Как правило, эти характеристики моделируются в виде полиномов второго порядка, коэффициенты (параметры) которых могут быть определены как теоретически, так и экспериментально по данным измерений. В данной работе для оценки коэффициентов расходной характеристики энергоблока по данным измерений рассматривается один из возможных методов параметрической идентификации.

Постановка задачи. Использование моделей расходных характеристик для решения упомянутой выше задачи оптимизации в составе АСУ ТП электростанции предполагает постоянную оценку (коррекцию) коэффициентов расходных характеристик энергоблоков по мере поступления данных измерений расхода топлива и электрической нагрузки. Это обусловлено изменением эксплуатационных характеристик оборудования энергоблоков в течении их работы. Наиболее эффективными методами такой оценки являются методы параметрической идентификации, основанные на рекуррентных процедурах, что позволяет реализовать их в контуре управления (в режиме online). В данной работе рассматривается модифицированный алгоритм идентификации параметров модели расходной характеристики энергоблока [2], основанный на рекуррентном преобразовании уравнений метода наименьших квадратов и который не требует большого количества памяти ЭВМ.

Результаты исследования. Рассмотрим расходную характеристику энергоблока в виде полинома второго порядка для некоторого k-го шага поступления измерений:

$$b_{(k)} = a_0 + a_1 \cdot P_{(k)} + a_2 \cdot P_{(k)}^2, \tag{1}$$

где $b_{(k)}$ и $P_{(k)}$ - измерения расхода топлива и активной мощности энергоблока соответственно в k-й момент времени; a_0 , a_1 , a_2 - коэффициенты (параметры) расходной характеристики, подлежащие идентификации.

Выделив идентифицируемые параметры в вектор $\theta = \begin{bmatrix} a_0 & a_1 & a_2 \end{bmatrix}^T$, уравение расходной характеристики (1) можно записать в матричном виде

$$z_{(k)}^T \cdot \theta = b_{(k)}, \tag{2}$$

где $z_{(k)} = \begin{bmatrix} 1 & P_{(k)} & P_{(k)}^{-2} \end{bmatrix}^T$ - выборка данных измерений мощности на k-м шаге; $b_{(k)}$ - расход топлива на k-м шаге.

Накапливая выборки измерений, получим матричное уравнение идентификации

$$Z \cdot \theta = B$$
, $Z = [z_{(1)}, z_{(2)}, ..., z_{(k)}]^T$; $B = [b_{(1)}, b_{(2)}, ..., b_{(k)}]^T$. (3)

Для формирования рекуррентной формулы метода наименьших квадратов введем в рассмотрение квадратную диагональную матрицу весовых коэффициентов $S_{\scriptscriptstyle (0)}$ и вектор-столбец идентифицируемых параметров $\Theta_{\scriptscriptstyle (O)}$, которые на начальном шаге будут иметь следующий вид:

$$S_{(0)} = diag \left\{ \mathbf{s}_{11} \quad \mathbf{s}_{22} \quad \mathbf{s}_{33} \right\}_{(0)}, \ \theta_{(0)} = \begin{bmatrix} \alpha_{0(0)} & \alpha_{1(0)} & \alpha_{2(0)} \end{bmatrix}^T$$

$$(4)$$

При этом, в качестве численных значений матрицы $S_{\scriptscriptstyle (0)}$ можно принять небольшие значения, а в качестве численных значений вектора $\theta_{\scriptscriptstyle (0)}$ принять значения коэффициентов близкие к реальным.

В качестве рекуррентной процедуры идентификации можно принять следующую формулу:

$$\theta_{(k)} = \theta_{(k-1)} + \gamma_{(k)} \cdot \left[b_{(k)} - z_{(k)}^T \cdot \theta_{(k-1)} \right], \tag{5}$$

где $\left[b_{(k)} - z_{(k)}^{\ \ T} \cdot \theta_{(k-1)}\right]$ - ошибка оценивания расходной характеристики на k-м шаге; $\theta_{(k-1)}$ - оценка вектора коэффициентов расходной характеристики на (k-1)-м шаге; $\gamma_{(k)}$ - вектор-столбец корректирующих коэффициентов, обеспечивающий сходимость итерационного процесса, который определяется по следующей формуле:

$$\gamma_{(k)} = \alpha_{(k)} \cdot \frac{1}{1 + z_{(k)}^T \cdot \alpha_{(k)}} . \tag{6}$$

В формуле (6) $\alpha_{_{(k)}}$ представляет собой вектор-столбец, который в свою очередь определяется по формуле:

$$\alpha_{(k)} = S_{(k)}^{-1} \cdot z_{(k)} \tag{7}$$

После каждого шага необходимо корректировать матрицу весовых коэффициентов $S_{(k)}^{-1}$ по следующей формуле:

$$S_{(k)}^{-1} = S_{(k-1)}^{-1} - \gamma_{(k)} \cdot \alpha_{(k)}^{T} . \tag{8}$$

Матрица $S_{(k)}$ имеет размерность 3x3 и не изменяется по размерности.

Для реализации изложенного подхода была составлена компьютерная программа с помощью программного пакета MATHCAD и проведены расчеты по идентификации коэффициентов расходной характеристики энергоблока ТЭС. Исходные измерения расходов топлива В и значений мощности Р приведены в табл. 1.

Таблица 1																															
711	275.7	275.2	2.77.5	278.6	279.7	279.4	261.8	259.9	260.6	262.6	260.8	245.6	245.1	245.9	246.5	245.3	245.3	242.7	229.6	232.6	201.9	206.7	201.8	200.6	197.8	202.6	198.3	175.4	177.4	178.8	179.5
/ 0.1	76.1	76.1	92	9.92	76.4	76.5	71	71.3	71.1	71.4	70.8	67.5	67.5	67.4	67.3	8.99	8.99	6.99	63	63.4	99	57.1	55.9	55.6	55	55.9	55.5	50.4	50.3	50.4	50.5

Получены следующие результаты по идентификации параметров вектора θ расходной характеристики энергоблока (1), которые приведены на рис.1 (a) – для параметра a_0 ; б) – для параметра a_2).

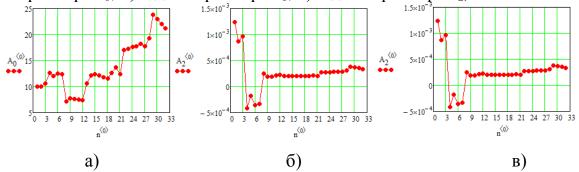


Рисунок 1 — Графики расчетов параметров расходной характеристики энергоблока

Выводы. Рассмотренный алгоритм позволяет использовать его в АСУ ТП электростанций, так как параметрическая идентификация расходной характеристики энергоблока осуществляется по последовательно поступаемым измерениям в режиме «on-line».

Используя полученные коэффициенты можно записать уравнение расходной характеристики:

$$B = 21.156 + 0.104 \cdot P + 3.378 \cdot 10^{-4} \cdot P^{2}$$
 (9)

На основе F-критерия Фишера [3] была выполнена проверка адекватности полученной модели исследуемому процессу и сделан вывод о том, что модель (9) является адекватной (с достоверностью 95%) и все рассчитанные коэффициенты модели являются значимыми, т.е. подтверждена исходная гипотеза об адекватности полученной модели исследуемому процессу.

Перечень ссылок

- 1. Веников В. А., Журавлева В. Г., Филиппова Т. А. Оптимизация режимов электростанций и энергосистем. М.: Энергоатомиздат, 1990. 352 стр.
- 2. Филатов А.Г., Курило О.С. Идентификация параметров расходных характеристик энергоблоков ТЭС рекуррентным методом/ Матеріали міжнародної науково-технічної конференції молодих учених, аспірантів і студентів. Сучасні проблеми електроенерготехніки та автоматики. Київ: "Політехніка", 2014 с.197- 199.
- 3. Ли Т.Г., Адамс Г.Э. У.М.Гейнз Управление процессами с помощью ЭВМ. М.:Советское радио,1972. 312с.