ДОСЛІДЖЕННЯ ІТЕРАЦІЙНИХ ПРОЦЕСІВ РОЗРАХУНКУ УСТАЛЕНОГО РЕЖИМУ. ГОЛОВНИЙ КРИТЕРІЙ ЗБІЖНОСТІ. ГРАНИЧНА ТОЧНІСТЬ

Савюк К.С., Романенко О.О., магістранти, Банін Д.Б., к.т.н., доц. КПІ ім. Ігоря Сікорського, кафедра автоматизації енергосистем

Вступ. В ряді електротехнічних задач, які орієнтовані на використання численних методів диференціювання, і різносних систем рівнянь (наприклад, вибір оптимальних рішень...), для коректності результатів має бути гарантована необхідна точність вихідних параметрів і поточних режимних характеристиках розрахункових схем (опори \dot{Z} , напруги \dot{U} , втрати потужності ΔP та інші). Цю інформаційну основу забезпечує задача розрахунку усталеного режиму, тому в її ітераційних процесах мають бути задіяні строгі (прямі) критерії збіжності з інформацією про реальну точність процесів. Задача являється актуальною для розробки програмних засобів моделювання режимів в електроенергетиці.

Мета роботи. Дана робота має довести коректність терміну <гранична точність> для конкретних розрахункових схем. Має бути розроблений універсальний метод визначення граничної точності і рекомендований головний критерій збіжності ітераційних процесів. Дослідницька задача вирішується для різних алгоритмів ітерацій, для експериментальних і промислових розрахункових схем великого обсягу. Дослідження обмежуються методами з базовою матрицею провідності **Ý**.

Матеріали та результати досліджень. Для вирішення поставленої задачі розроблені чотири програми розрахунку режиму, які використовують просту ітерацію (PROiii), ітерацію Зейделя (ZEYiii), ітерацію з оберненою матрицею провідностей (Y_Ziii) та ітерацію метода Ньютона. Цей широкий математичний набір повинен забезпечити коректність висновків по результатам аналізу спектра алгоритмічно різних ітераційних процесів.

Всі програмні реалізації опираються на ряд загальних електротехнічних та математичних позицій:

* Задіяна блочна структура матриці \dot{Y} , де виділяються блоки для балансуючих і навантажувальних вузлів розрахункових схем $(\dot{Y}_{bb}, \dot{Y}_{bn}, \dot{Y}_{nb}, \dot{Y}_{nn})$, задані потужності навантажень (\dot{S}_n) , а невідомими являються напруги \dot{U}_n ;

* Для всіх програм використовується одне і те саме рівняння стану режиму (РСР) і формат розрахунку ітерованого вектора нев'язки (для спрощення, навантажувальний індекс <**n**> виключений):

$$\dot{\boldsymbol{W}} = \dot{\boldsymbol{Y}} \cdot \dot{\boldsymbol{U}} - \dot{\boldsymbol{B}} = \boldsymbol{0} \text{ (PCP)}, \\ \dot{\boldsymbol{F}}^{(k)} = \dot{\boldsymbol{Y}} \cdot \dot{\boldsymbol{U}}^{(k)} - \dot{\boldsymbol{B}}^{(k)} \text{ (нев'язка), де}$$
(1)

k – крок ітерації;

 \dot{B} – вектор, що визначає нелінійність ітераційного процесу.

$$\dot{B} = \hat{S}/\hat{U} - \dot{Y}_{nb} \cdot \dot{U}_b, \quad \dot{B}^{(k)} = \dot{I}^{(k)} - \dot{I}_0 \tag{2}$$

Відмітимо, що мережеві параметри поперечних провідностей ліній і трансформаторів, а також вузлові шунти на землю \dot{Y}_{5} , враховані в структурі матриць провідностей \dot{Y} ;

* Рекурентні відображення процесів, де вираховується поправка до вектора невідомих, також має аналогічну форму і механізм виводу розрахункових формул:

PRO:	$\dot{U}^{(k+1)} = \dot{U}^{(k)} - \dot{D}^{-1} \cdot \dot{F}^{(k)}$	Проста ітерація;	
ZEY:	$\dot{\boldsymbol{U}}^{(k+1)} = \dot{\boldsymbol{U}}^{(k)} - \dot{\boldsymbol{H}}^{-1} \cdot \dot{\boldsymbol{F}}^{(k)}$	Ітерація Зейделя;	(3)
Y_Z:	$\dot{\boldsymbol{U}}^{(k+1)} = \dot{\boldsymbol{U}}^{(k)} - \dot{\boldsymbol{Z}} \cdot \dot{\boldsymbol{F}}^{(k)}$	Ітерація з $\dot{Y}^{-1} = \dot{Z};$	
NF:	$\dot{\boldsymbol{U}}^{(k+1)} = \dot{\boldsymbol{U}}^{(k)} - \boldsymbol{J}^{(k)} \cdot \dot{\boldsymbol{F}}^{(k)}$	Ітерація Ньютона, де	

 \dot{D} , \dot{H} , \dot{Z} — відповідно діагональна або нижня трикутна складова матриці \dot{Y} і обернена їй в факторизованій формі;

J – матриця Якобі часткових похідних $\partial \dot{w} / \partial \dot{U}$. Через не аналітичність РСР матриця Якобі реалізується у дійсному просторі подвоєної розмірності (2*n*). Корегується всередині ітераційного процесу;

* Всі ітераційні процеси можуть закінчуватись за трьох причин: нормальне завершення SntB < EPS, де SntB – максимальний вузловий небаланс потужностей; завершення при стабілізації, коли SntB > EPS, але SntB < EPSp, де EPSp – гранична точність розрахункової схеми; аварійне завершення по максимальній дозволеній кількості ітерацій (Kit_m). Кількість ітерацій, яка посвідчує наявність стабілізації процесу визначено параметром Kit_b . Для пропуску кроків, які не документуюся задіяний параметр Kit_o . В процесах **PRO** та **ZEY** регулюється внутрішній цикл (ВНУП) по параметру Kit_e , окрім того є документація про значення критеріїв непрямої збіжності процесів:

SntU < EPS де, SntU – максимальна поправка $\partial \dot{U}^{(k)} = \dot{U}^{(k+1)} - \dot{U}^{(k)};$

SntS < EPS де, SntS – максимальна нев'язка $\partial \dot{S}^{(k)} = \dot{U}^{(k+1)} \cdot \hat{I}^{(k)} - \dot{S}_n;$

На рис. 1 представлений ряд простих розрахункових схем, які використовуються для відлагодження і дослідницьких експериментів із певним схемним акцентом:

- 1. Схема ITER для відлагодження ідентичності всіх процедур (PRO, ZEY);
- 2. Схема DBO із прогнозом обов'язкової ситуації, коли *EPSp* << *EPS*;
- 3. Схема **IKT** із широким спектром напруг 750 \div 0.4 кВ і наявністю **\dot{Y}_{s}**;

- 4. Схема **IZ0** із наявністю нульових опорів **Z***o*, щодо комутаційних пристроїв;
- 5. Схема **TRANS** авторська промислова схема по матеріалам оператора системи з розподілу (ОСР) ПрАТ ДТЕК <Київські регіональні мережі>;
- 6. Схема **KONTUR** для аналізу впливу рівня замкнутості електромереж.

Рисунок 1 – Відлагоджувальні, експериментальні та фрагмент промислової схеми ДТЕК <Київські регіональні мережі>

На всіх схемах вказаний кінцевий результат досліджень *NEPS* – стабільна ступінь граничної схемної точності *EPSp*. Приведені схеми мають різні значення *NEPS* (*EPS* = $10^{-5} \div 10^{-12}$), але головне, вони однакові для всіх ітераційних процесів і для всіх програмних засобів.

Рис. 2 представляє графіки збіжності всіх ітераційних процесів для схем **ITER(g01, g20, g21, g22)** і **DBO(i01, i20, i21, i22)** із необхідними коментарями, наприклад:

- g21 << представлений процес простої ітерації із внутрішнім ВНУП лінійним та зовнішнім ВНЕП нелінійним процесом, що збігається по EPS = 10^{-10} . Час розрахунку Time = 0.500 сек (100 разів). Вихід по *SntB*. Гранична точність *EPSp* = 10^{-12} (NEPS = -12) >>;
- **g20** << представлений процес із матрицею $\dot{Y}^{-1} = \dot{Z}$. Процес збігається по **EPS** = 10⁻¹⁰. Час розрахунку **Time** = 0.048 сек (100 разів). Вихід по *SntB*, *EPSp* = 10⁻¹¹ (NEPS = -11) >>;
- i22 << представлений процес Зейделя. Процес не збігається по EPS = 10^{-10} . Час розрахунку Time = 0.280 сек. Вихід по стабільності NEPS = -5, EPSp = $10^{-5} >>$;
- i01 << представлений процес Ньютона. Процес не збігається по EPS = 10^{-10} . Час розрахунку Time = 0.051 сек. Вихід по стабільності NEPS = -5, EPSp = $10^{-5} >>$ і т.д..

Всі графіки представлені в логарифмічних координатах, в яких використовуються функції *ln(SntU), ln(SntS), ln(SntB)* та інші.

Ітераційні процеси для схем із нульовим опором **IZ0** ілюструються на рис. 3. Тут пропонується документація програми **Y_Z** по чотирьом режимним варіантам, коли нульовий опір заміщається малим $X_o = 0.01, 0.001, 0.0001, 0.00001$ Ом. Також приводяться графіки збіжності цих варіантів. Всі процеси можна характеризувати:

с20(1, 2, 3, 4) – << представлений процес із матрицею $\dot{Y}^{-1} = \dot{Z}$. Процес не збігається по EPS = 10⁻¹⁰. Вихід по NEPS = -9 або -8 або -7 або -6 >>.

Необхідно звернути увагу, що непрямий контроль збіжності по критерію *SntU* та *SntS* некоректно забезпечив точність 10^{-10} . Реально маємо залежність $EPS_p = f(X_o) \le EPS$. Для перевірки реалізуємо еквівалентування розрахункової схеми **IZO** із видаленням нульових опорів і паралельних гілок. Результуюча спрощена схема, графік збіжності із виходом по заданій точності $EPS = 10^{-10}$ і гранична схемна точність $EPSp = 10^{-12}$ ілюструється на рис. 4.

Рисунок 2 – Графіки збіжності схем ITER та DBO, фіксація граничної точності

Рисунок 3 – Варіанти схем IZ0 зі значеннями $X_o = 0.01 \div 0.00001$. Всі виходи по стабільності граничної точності EPSp = $10^{-9} \div 10^{-6}$

Результати аналогічних досліджень для промислових схем великого об'єму зведені в таблицю 1, де окрім авторської схеми **STR_ORQ** розглянуті режими мереж операторів систем з розподілу ОСР (Харків, Одеса, Миколаїв, Чернігів). Представлені вихідні об'єми схем (**KP**), втрати активної потужності, розрахунковий час, діапазон граничних точностей згідно функції $EPSp = f(X_o)$ і, нарешті результат еквівалентних схем.

N⁰	Схема	KP	ΔР [МВт]	Time	EPSp	X=0.01	X=0.00001	немає Z ₀ (КР)
1.	Харків	2125	35.803	0.107	→	10-9	÷ 10 ⁻⁶	10 ⁻⁹ (1855)
2.	Одеса	1809	35.000	0.095	→	10-9	+ 10-6	10 ⁻⁹ (1479)
3.	Миколаїв	1488	30.768	0.071	→	10-8	÷ 10 ⁻⁵	10 ⁻⁸ (1237)
4.	Чернігів	902	11.678	0.040	→	10-9	+ 10-6	10 ⁻⁹ (752)
5.	STR_ORQ	321	18.007	0.015	→	10-9	+ 10-6	10-9 (279)

Таблиця 1 – Граничні точності EPS великих промислових схем

Висновки. Доведено, що кожна розрахункова схема має власну граничну точність EPSp, яку значно знижує наявність нульових опорів. Рекомендується в комп'ютерних реалізаціях розрахунку режимів передбачати три варіанти завершення процесів: по заданій точності EPS, при стабілізації процесу по EPSp і аварійне завершення по Kit_m . Відмічається можливість некоректного закінчення процесів при контролі за непрямим критеріям. Пропонується вважати головним критерієм збіжності процесу максимальний вузловий небаланс в потужностях.

Перелік посилань

1. Алгоритмізація та програмування електроенергетичних задач. Моделі, методи, алгоритми і програми для промислових комп'ютерних комплексів [Електронне видання]: навч. посіб. / Д. Б. Банін, М. Д. Банін, А. В. Гнатовський. – К.: НТУУ "КПІ", 2016. – 104 с

2. Банін Д.Б., Банін М.Д., Луців П.Д. Розрахунок та пофідерний аналіз складових технологічних витрат електроенергії в мережах 10(6)/0.4 кВ ВАТ "ЕК "Хмельницькобленерго" за допомогою програмного комплексу РАОТВ // Электрические сети и системы.-2010", с.46-67.

3. Дж. Ортега, В. Рейнболдт. Итерационные методы решения нелинейных систем уравнений с многими неизвестными. – М.: "Мир", 1975, – 558 с.