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Introduction. Sensorless control is still a relevant task of the modern theory of 

electric drive. Many practical solutions to develop sensorless electromechanical 

systems with the induction and synchronous motors were recently proposed. 

However, the rigorous theoretical background, as well as a general methodology of 

the synthesis of sensorless electric drives, are absent. It is particularly relevant to the 

direct current (DC) electric drives. 

Review of the latest publications 

Sensorless DC-drives are usually implemented on the base of thyristor DC 

electric drive with the feedback by electromotive force (EMF). The disadvantages of 

such systems are well known and difficult to be overcome when using traditional 

approaches to designing a control system 1. From the viewpoint of the control theory, 

this problem relates to the adaptive control of linear objects 2. 

The general solution is to design a speed observer based on measurable signals: 

armature current and/or voltage. The observer in 3 uses a simplified model of DC 

motor, neglecting the armature inductance and current dynamics. An optimal 

observer 4 provides high-performance tracking only in the specific operating 

conditions. Sliding mode observer 5, which provides local stability of speed 

estimation, has a considerable level of noises in the current regulation loop. The 

estimation algorithm based on adaptive filters 6 implements a Kalman filter. The 

estimation algorithm based on torque disturbance estimation 7 is overparameterized. 

A hybrid fuzzy-PI observer 8 does not provide an optimal solution in all operation 

modes of the motor. The controller 9 provides speed estimation based on only the 

duration of the voltage spikes in PWM (Pulse-Width Modulation). Despite it does not 

require speed and current sensors, the algorithm requires an additional voltage sensor 

for the motor armature. 

The solutions 4, 6, 9 do not provide asymptotic speed tracking. The papers 3 – 

5 provide the stability analysis of the estimation convergence only, but none of them 

demonstrate proofs of the close-loop system stability. The solutions 4 – 9 have 

complex configuration procedures of the observer and controller. The configuration is 

strongly dependent on the DC motor parameters. The algorithms 6, 8, 9 do not 

provide a robustness. 

The challenges, identified above can be solved based on the method proposed 

below, to ensure the following features to the sensorless DC drive: 

 dynamic and static properties close to the system with speed measurement; 

 cascaded structure of control system, which is similar to standard systems with 

subordinate parameters regulation; 

 robustness to deviation of variables and parametric disturbances; 
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 simplicity of controller configuration. 

Purpose of research. The paper aims to design a speed tracking sensorless control 

algorithm, which has robustness properties to coordinate deviation and parametric 

disturbances, based on the speed observer for DC drive with separate excitation. 

Material and results of the research. 

Formulation of the task 

Assuming the exciting flux is constant, the DC motor model can be defined as 
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where   is the motor speed, i  is armature current, u  is control voltage, 
LT  is the 

load torque, R , L  – armature resistance and inductance, c  – torque constant, and 

c J  . 

 

Considering the DC motor model (1), the following assumptions are taken into 

consideration: 

A1. The speed reference trajectory *  is smooth, bounded function together with 

its first *  and second *  time derivatives; 
*i  is bounded current reference with 

bounded derivative 
*i . 

A2. The load torque 
LT  is unknown, constant or changing slowly and limited. 

A3. All motor parameters are known and constant. 

A4. Current i  is available for measurement; speed   is unmeasured. 

Under these assumptions, a linear dynamic controller can be found in the 

following form 
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which ensures asymptotic speed tracking, i.e. 
t
lim 0


 , where *     – speed 

tracking error, z  – the integral control action. 

The algorithm is developed in the following stages: A) a controller with 

robustness properties is synthesized given speed is measured; B) the speed observer 

is developed; C) development of the integrated electromechanical system which 

consists of controller, observer, and motor. The final step D) is the stability analysis 

of the developed closed-loop system. 

Synthesis of control algorithm 

An employed output-feedback linearizing technique implies that the speed 

regulation loop must be designed first. 
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A) Controller with the speed measurement 

From (1) the speed error dynamics becomes 

 

 
*
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ˆi T T      , (3) 

where LT̂  is estimate of the load torque component 
LT J , and L L L

ˆT T J T   is the 

load torque estimation error. 

 

In case of ideal current tracking and 
LT const , speed controller is described 

as 

 

 
 *

L

L L i

1 ˆi k T ,

T̂ T k ,





 




   

   

 (4) 

where k 0  , 
ik 0   are speed controller proportional and integral gains. 

 

The ideal dynamics of the speed loop under the current control condition is  
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The system (5) is stable  ik ,k 0   , i.e.  L
t
lim T , 0


 . Its dynamic 

properties are set by the damping factor   and the natural frequency of undamped 

oscillations, which corresponds to the 2nd order system (5). 

The armature current is not the real control action in (3), so (4) can be 

considered as reference 
*i  for the current i . Defining current tracking error as 

 

 
*i i i  , (6) 

 

system (5) becomes 
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The control voltage must guarantee the current error tracking, i.e. 
t
lim i 0


 . 

Substituting (6) into the second equation of (1), current error dynamics is 
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where the reference current derivative is divided into the known function *

1i  and the 

unknown term *

2i  defined from (4) as 
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The current controller is constructed from (8) and (9) 
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where y  – current integral term,  i1 iik ,k 0  are the proportional and integral gains 

of the current controller. 

 

After substitution of (10) in (8), the resulting closed-loop error dynamics is 

given by 
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, (11) 

where i i1k R L k  . 

 

The linear system (11) is asymptotically stable with the suitable tuning of the 

speed and current controllers gains  ik ,k  ,  i1 iik ,k . It is known from the theory of 

cascaded systems that the speed of response of the current closed-loop, given by the 

two last equations in (11), should be at least two times faster than speed control loop 

dynamics 10.  

Time-scale separation between speed and current dynamics may be obtained 

using the standard frequency-domain approach on the base of characterization 

equation solution: 

 

 
2

p inp k p k 0   . (12) 

 

The standard adjustment of each second-order subsystem is 
2

in pk k 4  for 

1  , and 
2

in pk k 2  for 0.707  . So that the relationship between the natural 
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frequency of undamped oscillations becomes  0i 0s2 4   , 2

0 ink  , where 

indexes ‘i’, ‘s’ are used for current and speed loop respectively. 

The resulting closed-loop error dynamics (11) has properties of structural 

robustness to coordinate deviation and parametric disturbances. This is due to 

cascaded connection of second-order systems with the two time-scale separation. The 

system tracks the reference speed without an error if initial conditions are at zero. 

It follows from the above analysis that asymptotic speed tracking is guaranteed 

if assumptions A1, A2, A3 are satisfied and speed is available for measurement. 

B) Speed observer 

During speed observer design, speed is assumed unmeasurable. Its output is 

used in the control algorithm instead of the measured speed. 

Define the current and speed estimation errors as 

 

 i
ˆe i i  , ˆe    , (13) 

 

and consider the following form of the speed observer: 
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where  1 2k ,k 0 . 

 

From (1) and (14), the estimation error dynamics can be described by the 

following equations: 
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where 0i 2k R L k  . 

 

Under condition LT 0 , the globally stable solution of (15) is ie e 0  . At 

the same time, the observer (15) is not asymptotic due to the presence of perturbation 

LT . 

To prove the robustness properties of system (15) to LT ,  the following 

coordinate transformation is considered 
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The error dynamics (15) in new coordinates (16) can be presented as 
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where 
02 1k ck L . 

 

Defining 2

02 0ik k 2 , equations (17) may be rewritten as 
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From (18) it can be concluded that      0ik 2 t
x t x 0 e


  under conditions of 

LT 0 , where  
T

x e ,z . Consequently, the load disturbance can be arbitrary by 

increasing 
0ik . It should be noted that the damping factor for (18) is 0.707  . 

C) Integrated electromechanical system 

Substituting ˆ   in (4) and (10), the estimated speed error can be defined as 

 

 *ˆ    . (19) 

 

The speed controller (14) can be represented in the following form: 

 

 
 * *

L

L L i

1 ˆi k T ,

T̂ T k .





 




   

   

 (20) 

 

Taking into account that e   , the system (7) can be rewritten as 
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The current controller is formed similarly to (10) in the following form: 
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The current derivative 
*i  is known from the solution of the equation (20) 
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Substituting the current control algorithm (22), (23) to (8), and taking into 

account (18) and (21), the resulting tracking and estimation error dynamics becomes 
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The equation system (24) represents a cascaded connection of three 

subsystems: speed regulation loop, current regulation loop, and speed observer. If the 

observer response is at least 3–4 times faster than the current loop, dynamics of the 

proposed system is similar to the system with the speed measurement. This 

corresponds to the following natural frequency of undamped oscillations: 

 0o 0i3 4   , 
2 2

0o 0ik 2  , where index ‘o’ is used for observer dynamics. Note 

that it was assumed 
ic L k , that is usually taking place in practice.  

The block-diagram of developed speed tracking algorithm is demonstrated in 

Figure 1. It consists of the PI-speed controller (20), PI-current controller (22), and the 

speed observer (14). 

D) Simulation results 

The proposed control algorithm was applied for DC motor, whose rated data 

are NP 500  W, R 1  Ohm, L 5  mH, J 0.01  kg
2m , c 1  Nm/A. 

The controllers parameters were set at: k 200  , 
2

ik k 2  , ik 1000 , 
2

ii ik k 2 ; tuning parameters of the speed observer (14) are 2k 2000 , 
2

1 2k k 2 . 

The operating sequence is following: at the initial time the unloaded motor is 

required to track the speed reference trajectory  * t , starting from zero initial value 

and reaching rated value at time t 0.15  s. The required dynamic torque equals to 

double rated value. At time t 0.3  s, a constant load torque, equal to the motor rated 

value, is applied; at time t 0.5  s load torque is set to zero. Transients of speed 

trajectory tracking are depicted in Figure 2. It goes from Figure 2 that the speed 

tracking error only occurs at the moments of applying the load. Transient  t  is 

virtually the same as for the algorithm (4), (9) with speed sensor. 
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 Figure 1 – Block-diagram of control algorithm 

 

  
 Figure 2 – Transients of speed trajectory tracking 
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Conclusions. A control algorithm for speed trajectory tracking is designed for 

DC drive, which not requires the direct speed measurement. The algorithm provides 

dynamic and static properties close to the system with a speed sensor and ensures 

system robustness to parametric disturbances and deviations of variables. 
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